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ABSTRACT

Recent advances in artificial intelligence have been fueled by the development
of foundation models such as BERT, GPT, T5, and Vision Transformers. These
models are first pretrained on vast and diverse datasets and then adapted to spe-
cific downstream tasks, often with significantly less data. However, the mecha-
nisms behind the success of this ubiquitous pretrain-then-adapt paradigm remain
underexplored, particularly the characteristics of pretraining checkpoints that lend
themselves to good downstream adaptation. We introduce a Bayesian model selec-
tion criterion, called the downstream free energy, which quantifies a checkpoint’s
adaptability by measuring the concentration of nearby favorable parameters for
the downstream task. We demonstrate that this free energy criterion can be effec-
tively implemented without access to the downstream data or prior knowledge of
the downstream task. Furthermore, we provide empirical evidence that the free en-
ergy criterion reliably correlates with improved fine-tuning performance, offering
a principled approach to predicting model adaptability.

1 INTRODUCTION

The advent of foundation models has significantly reshaped the landscape of modern machine learn-
ing (Bommasani et al., 2021). Trained on expansive, diverse datasets using supervised or self-
supervised learning methods, these models learn generalized representations that can then be suc-
cessfully adapted (or finetuned) to a wide array of downstream tasks, often where there is signif-
icantly less data or limited computational resources (Bengio, 2012; Brown, 2020). This pretrain-
then-adapt paradigm has emerged as a dominant and highly successful technique driving significant
progress across natural language processing and computer vision with applications including text
classification (Qiu et al., 2020), text generation (Li et al., 2024), image classification (Liu et al.,
2023b), object detection (Sanchez et al., 2020), medical imaging (Mormont et al., 2018; Chen et al.,
2019; Ke et al., 2021), autonomous driving (Kim & Park, 2017) and robotics (Jaquier et al., 2023).

As a result, there is a growing body of research aimed at better understanding the theoretical reasons
behind the success of this pretrain-then-adapt paradigm (Galanti et al., 2022; Munn et al., 2024). One
of the key open questions is to understand how to select pretraining checkpoints which are optimal
for adaptation. A number of practical heuristics have emerged through experimental intuition and
empirical analysis (Liu et al., 2023a), but a principled theoretical framework for effective checkpoint
selection is still lacking.

To address this, we repurpose well-established concepts form Bayesian statistics and propose down-
stream free energy as a pretraining model selection criterion. Downstream free energy measures
the negative log of the concentration of well-performing network weights near a pretraining check-
point when evaluated on downstream data. Intuitively, lower downstream free energy indicates a
higher concentration of parameters in parameter space for which the model is more adaptable and
capable of generalizing well on downstream tasks. In short, checkpoints with lower downstream
free energy are better suited for adaptation and thus should be preferred during pretraining.

∗Equal contribution.
†Part of this work was conducted while the author was affiliated with the University of Melbourne.
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Although the use of downstream free energy as a pretraining model selection criterion has strong
theoretical motivations, it comes with an unfortunate caveat: to compute it requires access to the
downstream dataset which may not be available to the practitioner during pretraining. However, un-
der certain distributional shift conditions between the pretraining and downstream data, it is possible
to overcome this limitation. Namely, we introduce the pretraining free energy, which is computed
solely on the pretraining data, and show that minimizing it serves as a reliable proxy for minimizing
the downstream free energy (see Proposition 5.3). Together, these insights provide a solid justifi-
cation for using the pretraining free energy as a model selection criterion during pretraining. This
strategy is particularly advantageous when pretraining is intended to be general purpose, as is the
case with most foundation models.

Figure 1: We plot pretraining free energy versus two types of transfer accuracy (left and right) for
checkpoints at the end of pretraining. As expected, checkpoints with lower pretraining free energy,
across various pretraining hyperparameters such as learning rate, batch size, and momentum, show
higher transfer accuracy. The size of the icons represent magnitude of the hyperparameter value;
e.g., a larger triangle means higher momentum. The reported values are averaged over five random
seeds. For further details, refer to Section 6.

To justify our theoretical results, we exploit certain pretraining mechanisms that are known to reduce
the pretraining free energy, such as larger learning rates, smaller batch sizes and higher momentum
(Lau et al., 2023). We then verify that these mechanisms, which lead to reduced pretraining free
energy, in turn correlate with improved downstream adaptation performance. A preview of these
results is presented in Figure 1. To summarize, our contributions are as follows:

• We introduce the downstream free energy as novel model selection criterion for quantifying
downstream adaptability; see Section 4.1.

• We show that the downstream free energy can be controlled by the pretraining free energy,
under mild assumptions on the data distributions (Proposition 5.3), and provide insight into
how this free energy perspective informs practical pretraining heuristics (Section 5.1).

• We verify experimentally that mechanisms which control the pretraining free energy indeed
lead to improved downstream adaptability; see Section 6.

2 RELATIONSHIP TO PRIOR WORK

Implicit bias in transfer learning. The term implicit bias refers to the tendency of optimization
processes, such as stochastic gradient descent (SGD), to inherently guide the model’s learning dy-
namics towards solutions with properties which are not explicitly prescribed by the loss function
(Neyshabur et al., 2017; Soudry et al., 2018; Gunasekar et al., 2018). For example, the selection
of training hyperparameters, such as the learning rate and batch size, can have a significant effect
on the optimization efficiency as well as on the quality of the learned model (Keskar et al., 2017;
Masters & Luschi, 2018; Goyal, 2017; He et al., 2019; Andriushchenko et al., 2023). As a result,
there has been considerable effort to understand the mechanisms which govern these implicit biases
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during model training. However, the effect of implicit bias in transfer learning—particularly how it
impacts successful downstream domain adaptation—is a growing but less explored area of research
(Lindsey & Lippl, 2023; Kumar et al., 2022).

In transfer learning, the ability to identify and leverage pretraining biases to predict and improve
downstream test error is highly valuable. Recent work of Liu et al. (2023a); Galanti et al. (2022);
Munn et al. (2024) can be viewed as establishing relationships of the form

downstream test error ≲ pretraining characteristic. (1)

Ideally, these pretraining characteristics are sensitive to factors which can be manipulated by prac-
titioners, thus allowing for deliberate influence and intentional design during pretraining. Further-
more, any such pretraining characteristic should be accessible using only pretraining data, since
knowledge to the downstream task or data is typically not available.

Liu et al. (2023a) explore the role of implicit bias in language modeling and establish an empirical
relationship between the pretraining flatness (measured by the trace of the Hessian of the pretraining
loss) and the downstream test accuracy. Their experiments verify that lower pretraining flatness,
which they show is effectively regularized by SGD, strongly correlates with better downstream per-
formance. Although this work does not provide a formal bound as in (1), it offers valuable empirical
evidence on how the implicit flatness regularization of SGD acts to benefit transfer learning. This
is particularly beneficial since techniques exist for explicitly minimizing loss landscape sharpness;
e.g., Foret et al. (2020); Wen et al. (2023).

Galanti et al. (2022) examine the efficacy of transfer learning through the lens of neural collapse, a
recently observed phenomenon which characterizes the geometry of last-layer features and weights
for overparameterized classification networks (Papyan et al., 2020). They show through theory and
experiments that the neural collapse exhibited during pretraining generalizes to new classes of the
downstream task as well, thus enabling successful model adaptation. Drawing on the formalism
described in (1), Galanti et al. (2022) can be seen as deriving theoretical bounds of the form

downstream test error ≲ downstream neural collapse ≲ pretraining neural collapse.

However, while this supports neural collapse as an effective pretraining characteristic, practical
levers which can be used to explicitly regularize the pretraining neural collapse are lacking.

Munn et al. (2024) make progress in this direction by means of the geometric complexity, a model
complexity measure introduced and analyzed in Dherin et al. (2022). They prove that the geometric
complexity of the model’s learned feature representations upper bounds the model neural collapse.
Furthermore, their experiments verify that techniques which implicitly reduce this geometric com-
plexity during pretraining (such as large learning rates, small batch sizes and increased L2 regu-
larization) in turn put regularizing pressure on the pretraining neural collapse leading to improved
transfer test accuracy.

Our key contribution is the identification of free energy as a novel and significant pretraining charac-
teristic which exhibits direct theoretical and empirical connections governing successful downstream
model adaptability. We prove in Section 5 that, similar to neural collapse, the pretraining free en-
ergy bounds from above the downstream free energy. In addition, we establish (see Appendix A) a
theoretical link between downstream free energy and the downstream Bayesian prediction, provid-
ing theoretical guarantees on the downstream Bayes test error. Together, these theoretical results,
viewed in the context of (1), imply

downstream Bayesian test error ≲ downstream free energy ≲ pretraining free energy.

Furthermore, using mechanisms established in Lau et al. (2023) which are known to implicitly
regularize the pretraining free energy—such as large learning rates, small batch sizes, and increased
momentum—we experimentally verify (see Section 6) that lower pretraining free energy does indeed
lead to improved fine-tuning performance.

Bayesian model selection criterion. The idea of using free energy has its roots in Bayesian model
selection. Given a collection of models, M1, . . . ,Mk, the task of choosing an optimal model for
some given data is known as model selection. There are different (and sometimes irreconcilable)
model selection criteria; but, in general, all model selection criteria attempt to balance fit and com-
plexity. A particularly appealing Bayesian model selection criterion is the free energy criterion
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which is widely used and accepted in the both the statistical and machine learning literature (Hinton
& van Camp, 1993; Kass & Raftery, 1995; MacKay, 2002; Robert et al., 2007). The free energy
model selection criterion says we should pick the model with the lowest free energy. Since the free
energy is the negative log of the marginal likelihood, also known as Bayesian model evidence, free
energy minimization is equivalent to marginal likelihood maximization. To our knowledge, this
work represents the first application of the free energy criterion in the domain of transfer learning.

3 PROBLEM SETUP

During pretraining, for input x and target y, we employ a probabilistic model p0(y|x,w) parame-
terized by w ∈ W ⊂ Rp. Throughout, we assume the pretraining model p0(y|x,w) depends on x
through a neural network

fPT
w (x) = σout(v

Tϕθ(x))

where w = (v, θ). Here ϕθ denotes the feature extractor parameterized by θ and v the weights of
the linear head. The final activation is denoted σout; e.g., softmax or sigmoid for classification tasks.

For fine-tuning, we attach a new linear head u to the backbone ϕθ resulting in a neural network

fFT
w′ (x) = σout(u

Tϕθ(x))

where w′ = (u, θ) with u potentially having different dimension to v. The fine-tuning probabilistic
model is denoted p1(y|x,w′) where the dependence on x is through fFT

w′ .

Given a pretraining checkpoint w∗ = (v∗, θ∗), we initialize fFT
w′ at (u0, θ

∗) where u0 is randomly
initialized. All parameters of w′ are then fine-tuned via stochastic optimization. In this work, we
employ limited fine-tuning where the linear head undergoes standard training, while the backbone
remains mostly frozen, with updates governed by a separate, smaller learning rate. This approach is
particularly useful in scenarios with limited downstream data, where the differential learning rates
help to prevent overfitting or loss of general-purpose representations; cf. Lee et al. (2022).

For theoretical convenience, we will assume that u and v share the same dimensionality1 This way,
we can use p(y|x,w) to denote both the pretraining and fine-tuning models. Let the true (and
unknown) pretraining (i = 0) and fine-tuning (i = 1) joint distributions be denoted

ri(x, y) := ri(y|x)ri(x), i = 0, 1;

and define the pretraining (i = 0) and fine-tuning (i = 1) test loss to be

Ki(w) := Eri(x)DKL(r
i(y|x)||p(y|x,w)).

Let D0 and D1 be datasets drawn from the pretraining and downstream distributions (resp.) and
define the corresponding pretraining and fine-tuning sample losses to be

K̂i(w) :=
1

|Di|
∑

(x,y)∈Di

(
log ri(y|x)− log p(y|x,w)

)
, i = 0, 1.

Note that minimization of Ki(w) and K̂i(w) with respect to w can recover the standard cross-entropy
loss and squared loss frequently employed in deep learning. Indeed, if we drop the entropy term in
Ki and K̂i, which does not depend on w, we obtain the negative log likelihoods, for i = 0, 1,

Li(w) := −Eri(x,y) log p(y|x,w)

L̂i(w) := − 1

|Di|
∑

(x,y)∈Di

log p(y|x,w).

We double load test loss to mean either Ki or Li and train loss to mean either K̂i or L̂i.

1This eases exposition by avoiding having to distinguish between p0(y|x,w) and p1(y|x,w′). Note, we do
not adhere to this restriction in our experiments.
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4 PRETRAINING AND DOWNSTREAM FREE ENERGY

In this section, we begin by introducing the downstream free energy as a measure of how suitable a
checkpoint is for downstream adaptation. We then introduce the pretraining free energy as a proxy
that can be measured solely using the pretraining data.

Let
U0 = {w∗

α = (v∗α, θ
∗
α)}α

denote the set of local minima of the pretraining test loss K0(w). In our theoretical development,
we will frequently refer to the elements of U0 as pretraining checkpoints. The elements of U0

are, however, distinct from the actual pretraining checkpoints that one obtains during the course of
pretraining using the empirical loss K̂0(w).

Given a single model – a parametric family M = {p(y|x,w) : w ∈ W} – with multiple optima (as
neural networks are prone to exhibit), we can perform internal model selection (Balasubramanian,
1996) using a local version of the free energy criterion to select among the local optima. This
amounts to comparing the downstream free energies between elements of U0. We now give a precise
definition of the downstream free energy associated to an element of U0.

4.1 DOWNSTREAM FREE ENERGY

With datasets D0 and D1 as above, let n = |D0| and m = |D1|. Informally, we might say that a
pretraining checkpoint w∗ = (v∗, θ∗) ∈ U0 is a good candidate for adaptation if there are many
weights θ in the vicinity of θ∗ with low fine-tuning test loss; i.e., low values of K1(w). One way to
make this mathematically precise is through the downstream free energy

F̄1(Bγ(w
∗)) := − log Z̄1(Bγ(w

∗)), (1)

which is the negative log of a local marginal likelihood

Z̄1(Bγ(w
∗)) :=

∫
Bγ(w∗)

exp{−mK1(w)}φ(w) dw. (2)

Here φ(w) is a prior over the model parameters w, and

Bγ(w
∗) := {w = (v∗, θ) : ||θ − θ∗||22 ≤ 1/γ}

is the γ-neighborhood around w∗ with v∗ frozen. Note that large values of γ force us to stay near θ∗
and thus, ultimately, stay near the pretraining checkpoint w∗ = (v∗, θ∗) as well.

Taken together, equations 1 and 2 imply that a large concentration of weights θ near θ∗ with low
downstream test loss K1(w) results in a large Z̄1(Bγ(w

∗)) and, equivalently, a small F̄1(Bγ(w
∗)).

Thus, we propose the following downstream free energy strategy for improved fine-tuning:

Pretraining checkpoints with lower downstream free energy are more likely to
adapt successfully to downstream tasks.

Formally, we seek to find parameters w∗ ∈ U0 which minimize the downstream free energy; i.e.,

arg min
w∗∈U0

F̄1(Bγ(w
∗)). (3)

Before addressing the implementation of this free energy strategy, let’s first understand the compet-
ing forces behind this model selection criterion. Given w∗ ∈ U0, following the techniques set out in
Watanabe (2009), we can write the asymptotic expansion of F̄1(Bγ(w

∗)) in the sample size m as

F̄1(Bγ(w
∗)) = mK1(w∗1) + λ1(w∗) logm+O(log logm), (4)

where
w∗1 := arg min

w∈Bγ(w∗)
K1(w).

Remark 4.1. From equation 4, note that that downstream free energy of a checkpoint w∗ is a
weighted sum of two things: the fit, as measured by K1(w∗1), and the complexity, as measured by
λ1(w∗). This complexity measure λ1(w∗) was recently introduced as the local learning coefficient;
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see Lau et al. (2023). Lower local learning coefficient means lower model complexity. Note that a
checkpoint with higher loss under the downstream distribution may still be preferred as long as its
complexity is low enough to compensate. Furthermore, note that for pretraining checkpoints that
are in the same level set of K1, the checkpoint with the lowest model complexity, as measured by λ1,
will have the lowest downstream free energy.

The free energy strategy in 3 which uses F̄1(Bγ(w
∗)) to select among candidate checkpoints in

U0 is conceptually sound but presents two notable implementation challenges. First, F̄1(Bγ(w
∗)),

besides involving some unknown terms such as K1, is the negative log of an intractable integral.
This is not insurmountable as many techniques such as MCMC or variational inference are available
to deal with intractable integrals.

The second, and more significant, issue is that applying F̄1(Bγ(w
∗)) to select among checkpoints

w∗ ∈ U0 requires access to downstream data. This poses a problem because, in many practical
scenarios, the downstream task may not be known or fully available during pretraining. To address
this limitation, we introduce the pretraining free energy, an analog of the downstream free energy
but which can be computed using only the pretraining data. In Section 5 we show how these two
quantities are related.

4.2 PRETRAINING FREE ENERGY

Similar to the downstream free energy defined in equation 1, we define the pretraining free energy
for a pretraining checkpoint w∗ = (v∗, θ∗) ∈ U0 as

F0(Bγ(w
∗);β) := − log Z0(Bγ(w

∗);β) (5)

where
Z0(Bγ(w

∗);β) :=

∫
Bγ(w∗)

exp{−nβK̂0(w)}φ(w) dw (6)

and β > 0 is an inverse temperature. Unlike Z̄1(Bγ(w
∗)) and F̄1(Bγ(w

∗)), here the quantities
Z0(Bγ(w

∗);β) and F0(Bγ(w
∗);β) are stochastic. We indicate this by dropping the overhead bar.

Analogous to equation 4, the asymptotic expansion of F0(Bγ(w
∗);β) in n for w∗ ∈ U0 is

F0(Bγ(w
∗);β) = nβK̂0(w∗0) + λ0(w∗) log n+Op(log log n) (7)

where
w∗0 := arg min

w∈Bγ(w∗)
K0(w).

Note that the asymptotic expansion of F̄1(Bγ(w
∗)) in 4 involves the downstream test loss K1

whereas the asymptotic expansion of F0(Bγ(w
∗);β) in 7 involves the pretraining train loss K̂0.

To compare the two, we take the expectation over the dataset in equation 7, arriving at the following
expansion involving only deterministic quantities:

ED0F0(Bγ(w
∗);β) = nβK0(w∗0) + λ0(w∗) log n+O(log log n). (8)

In the next section, we will use these asymptotic expansions to bound the discrepancy between the
downstream and pretraining free energy.

5 RELATIONSHIP BETWEEN PRETRAINING AND DOWNSTREAM FREE ENERGY

In this section, we show there is a satisfying relationship between pretraining free energy and down-
stream free energy, asymptotically speaking. Relying on the leading order terms of the asymptotic
expansion of the downstream free energy in equation 4, we can express the downstream free energy
strategy in 3 as

arg min
w∗∈U0

[
mK1(w∗1) + λ1(w∗) logm

]
where w∗1 := arg min

w∈Bγ(w∗)
K1(w). (9)

To avoid requiring the downstream test loss K1, we introduce the pretraining asymptotic free
energy strategy which relies only on the pretraining distribution and (under mild assumptions,
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below) serves as a viable proxy for 9. Formally, this strategy seeks a solution of the following
optimization

arg min
w∗∈U0

[
nβ0K

0(w∗) + λ0(w∗) log n
]

where β0 = M
m log n

n logm
. (10)

Let us first state our underlying assumptions.

Assumption 5.1. The parameter γ is such that w∗0 is a local minimum of K0(w); i.e., w∗0 ∈ U0.

Assumption 5.2. The pretraining distributions r0(x, y) and the downstream distribution r1(x, y)
are such that

M := max
(x,y)∼r0(x,y)

r1(x, y)

r0(x, y)
< ∞.

Assumption 5.1 stipulates that the γ-neighborhood around w∗ is not too big so as to ensure that w∗

remains a local minimum in Bγ(w
∗). Assumption 5.2 stipulates that the pretraining and downstream

distributions should not be too different; the same assumption was made in Yamazaki et al. (2007)
for the purpose of study distribution shift.

Proposition 5.3. Let w∗ be a local minimum of K0(w); i.e., w∗ ∈ U0. Suppose Assumptions 5.1
and 5.2 hold. Further suppose λ1(w∗) ≤ λ0(w∗). Then we have

K1(w∗1) + λ1(w∗)
logm

m
≤ MK0(w∗) +D + λ0(w∗)

logm

m
(11)

where D =
∫
log r1(y|x)

r0(y|x)r
1(x, y) dx dy.

Proof. By definition of the test loss and rearranging terms via change of measure, for all w,

K1(w) =

∫
log

(
r1(y|x)
p(y|x,w)

)
r1(x, y)dxdy =

∫
log

(
r0(y|x)
p(y|x,w)

r1(y|x)
r0(y|x)

)
r1(x, y)

r0(x, y)
r0(x, y)dxdy

=

∫
log

(
r0(y|x)
p(y|x,w)

)
r1(x, y)

r0(x, y)
r0(x, y) dx dy +

∫
log

(
r1(y|x)
r0(y|x)

)
r1(x, y) dx dy

≤ MK0(w) +D.

Also, by definition of w∗1, we have K1(w∗1) ≤ K1(w∗). Combining these two facts, we get
K1(w∗) ≤ MK0(w∗) +D and obtain the conclusion in equation 11.

Proposition 5.3 justifies model selection using the asymptotic expansion of the pretraining free en-
ergy as in 10. This follows from equation 11 by first multiplying both sides by m and then noting
that minimizing mMK0(w∗) +mD + λ0(w∗) logm is equivalent, up to constants, to minimizing

log n

logm

[
mMK0(w∗) + λ0(w∗) logm

]
,

which leads us precisely to 10. To further illustrate Proposition 5.3, we include explanatory examples
in Appendix C which interprets this result applied to Gaussian distributions.

5.1 OBSERVATIONS OF THE PRETRAINING ASYMPTOTIC FREE ENERGY STRATEGY

In this section, we present practical observations that follow from selecting pretraining checkpoints
according to the pretraining asymptotic free energy strategy defined by 10.

Observation 1: A suboptimal checkpoint in terms of pretraining test loss can still be pre-
ferred by the pretraining asymptotic free energy strategy in 10. Suppose we have two mod-
els w∗

α, w
∗
β ∈ U0; i.e., both models are local minima of the pretraining test loss K0. In or-

der to determine which model is preferred for fine-tuning, our strategy 10 directs us to compare
Fα = nβ0K

0(w∗
α) + λ0(w∗

α) log n and Fβ = nβ0K
0(w∗

β) + λ0(w∗
β) log n.
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Suppose K0(w∗
α) < K0(w∗

β); i.e., w∗
α and w∗

β are in different level sets and checkpoint w∗
α has

lower pretraining test loss; but λ0(w∗
α) > λ0(w∗

β), implying checkpoint w∗
β is less complex than

checkpoint w∗
α. Then it is entirely possible for Fα > Fβ so that checkpoint w∗

β will be preferred by
10 despite having higher pretraining test loss. In fact, this happens precisely when

m

logm
<

1

M

λ0(w∗
α)− λ0(w∗

β)

K0(w∗
β)−K0(w∗

α)
.

Recall, m represents the number of examples in the downstream dataset. Note that, when M is large,
there’s a smaller range of m under which the suboptimal pretraining checkpoint will be preferred.
In other words, if the downstream distribution is very different to the pretraining distribution, the
free energy strategy will look to the lower level sets of pretraining test loss.

Observation 2: When nβ0 ≫ log n, a checkpoint with lower pretraining test loss will always
be preferred by the pretraining asymptotic free energy strategy in 10. Again, suppose we
have two local minima w∗

α, w
∗
β ∈ U0 but which are in different level sets of the test loss; i.e.,

K0(w∗
α) ̸= K0(w∗

β). Without any knowledge or bound on β0, we cannot decide which checkpoint
has lower free energy since, as described above in Observation 1, the complexity term λ0 also plays
a role in comparing Fα and Fβ .

However, when nβ0 is significantly larger than log n, the first term in 10 dominates the second. In
this case, the pretraining asymptotic free energy strategy prioritizes checkpoints with lower pretrain-
ing test loss K0.

Using the definition of β0 in 10, the setting described here is equivalent to Mm ≫ logm, where
m is the size of the fine-tuning dataset and M measures distributional shift. Since m already grows
faster than logm, this may offer an intriguing insight which justifies the reliability of pretraining
test loss as a heuristic for checkpoint adaptability.

Observation 3: For checkpoints with the same pretraining test loss, the one with the lowest
complexity is preferred by the pretraining asymptotic free energy strategy in 10. Suppose we
have two models w∗

α, w
∗
β ∈ U0 in the same level set of K0; i.e., they have the same pretraining test

loss K0(w∗
α) = K0(w∗

β). As before, our strategy 10 directs us to compare Fα = nβ0K
0(w∗

α) +

λ0(w∗
α) log n and Fβ = nβ0K

0(w∗
β) + λ0(w∗

β) log n. However, since the first terms are equal,
selecting the preferred pretraining checkpoint depends only on the model complexity, as measured
by λ0(w∗

α) and λ0(w∗
β). Therefore, holding all else the same, the strategy in 10 naturally prefers

simple pretraining checkpoints over more complex ones for improved fine-tuning.

5.2 ESTIMATING PRETRAINING FREE ENERGY

So far, we have established the pretraining asymptotic free energy strategy as a theoretically princi-
pled approach to pretraining model selection for improved finetuning. In this section, we show how
to estimate the pretraining asymptotic free energy required in 10 using only the sample pretraining
train loss L̂0. This estimation technique, which we employ in our experiments (Section 6), enables
the application of our proposed strategy in 10 for real-world machine learning scenarios.

We begin by focusing first on model selection for pretraining checkpoints in the same level set of
K0. In this case, we can set β0 to an arbitrary value; we set β0 = 1. Next, note that the optimization
objective in 10 can be equivalently expressed in terms of L0 since it differs only from K0 by a
constant with respect to w. In other words, we have

arg min
w∗∈U0

[
nK0(w∗) + λ0(w∗) log n

]
= arg min

w∗∈U0

[
nL0(w∗) + λ0(w∗) log n

]
. (12)

To estimate the RHS of equation 12, we refer to recent work of Lau et al. (2023) which shows that the
Widely Applicable Bayesian Information Criterion (WBIC) around w∗ ∈ U0 is an asymptotically
unbiased estimator of nL0(w∗) + λ0(w∗) log n. This localized version of the WBIC is computed
from the sample pretraining train loss L̂0 measured in the neighborhood Bγ(w

∗) of the checkpoint
w∗ as described below.
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Consider a localizing Gaussian prior which acts as a surrogate for enforcing the domain of integra-
tion given by Bγ(w

∗). Specifically, let

φγ⃗(w) ∝ exp{−γ⃗T ||w||22}, γ⃗ ∈ Rp
>0

which is centered at the origin with scale vector γ⃗ = (γ1, . . . , γp). Since we only want to measure
the free energy with respect to parameters θ of the model backbone (recall, the fine-tuning setup
described in Section 3), we take γj = ∞ in the coordinates of v and γj = γ in the coordinates of θ,
where γ is the same as the radius defining the neighborhood Bγ(w

∗); recall, equation 2.

Define the pretraining posterior distribution

p0(w;w∗, β, γ⃗) ∝ exp{−nβL̂0(w)}φγ⃗(w − w∗). (13)

Following Lau et al. (2023), we define the pretraining WBIC at w∗ ∈ U0 by

WBIC(w∗;β∗) :=

∫ [
nL̂0(w)

]
p0(w;w∗, β∗, γ) dw, (14)

where β∗ = 1
logn . The pretraining WBIC at a checkpoint w∗ is a good estimate of the (expected)

pretraining free energy around w∗ defined by equations 5 and 6. Furthermore, WBIC(w∗;β∗) can
be reliably computed using SGLD sampling methods; see (Lau et al., 2023, Appendix G: Algorithm
1).

Therefore, to apply the pretraining asymptotic free energy strategy in 10 to checkpoints with the
same K0, we simply select the one with the smallest pretraining WBIC given by WBIC(w∗;β∗). In
the next section, we empirically verify this strategy using the CIFAR dataset trained on ResNet-18.

6 EXPERIMENTS

The goal of our experiments is to evaluate how well the pretraining WBIC, which estimates the
pretraining free energy as described in Section 5.2, correlates with downstream performance. In
order to measure the impact of lower pretraining WBIC, we apply mechanisms during pretraining
which are known to implicitly regularize this quantity, as shown in (Lau et al., 2023). These include
including large learning rates, small batch sizes, and high momentum.

We use the CIFAR-FS dataset (Bertinetto et al., 2019), derived from CIFAR-100 where the 100
classes are divided into 64 classes for meta-training, 16 classes for meta-validation, and 20 classes
for meta-testing. We pretrain on the meta-training set and then assess model adaptability on the
unseen meta-test set via limited fine-tuning described in Section 3. The meta-validation classes are
not used.

Pretraining. For pretraining, we use all 64 classes from the CIFAR-FS meta-training set to train
a ResNet-18 model using stochastic gradient descent (SGD). We explore ranges of hyperparameter
values for the learning rate, batch size and momentum. Interaction effects between these are not
considered. Full experiment details for each hyperparameter sweep are provided in Appendix B.1.
During training we track the pretraining train loss (first column of Figure 2) and the pretraining
WBIC (second column of Figure 2). The hyperparameter settings for pretraining WBIC computation
are provided in Appendix B.1.

Fine-tuning. We assess transfer accuracy in two downstream settings. Full meta-test fine-tuning
uses the full meta-test dataset, consisting of all 20 meta-test classes with 600 examples per class.
We use an 80/20 split for training and testing, with stratification within each class. In this setting a
new (randomly initialized) linear head is attached for the 20-class classification task, and the model
is fine-tuned for 100 steps using SGD. This setting corresponds to the “Finetune Transfer Accuracy”
metric (third column) in Figure 2. Hyperparameter details for this setting are in Appendix B.2.

Few-shot meta-test fine-tuning examines a data-limited, few-shot scenario. A single few-shot task
is created by randomly sampling 5 classes and 5 examples per class from the meta-test dataset, cre-
ating a dataset with 25 total training examples. A new (randomly initialized) linear head is attached
for the 5-class classification task, and the model is finetuned for 100 steps using full batch gradient
descent. The transfer accuracy is evaluated on 100 randomly selected test examples for each of the 5
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classes. The overall transfer accuracy is averaged over 100 few-shot tasks. This setting corresponds
to the “Avg 5-shot Transfer Accuracy” metric (fourth column) in Figure 2. Hyperparameter details
for this setting are in Appendix B.2.

Results. In each of these two fine-tuning scenarios, we observe a strong correlation between lower
pretraining free energy (as measured by the pretraining WBIC, see Section 5.2) and better down-
stream performance; see Figure 2. In particular, we see that increasing learning rate, decreasing
batch sizes, and increasing momentum all result in lower pretraining WBIC, which in turn leads
to better downstream performance. Note the Avg 5-shot transfer accuracy (fourth column) is typi-
cally higher than the finetune transfer accuracy (third column); this is likely because the former only
needs to learn 5 classes at a time while the latter needs to learn 20 classes. In Figure 1, we take each
checkpoint at the end of pretraining and plot its pretraining WBIC (called pretraining free energy
there since the terminology had not been introduced) versus transfer accuracy. The left (right) plot
of Figure 1 corresponds to the third (fourth) column of Figure 2.

Figure 2: Model checkpoints with lower pretraining WBIC (second column) consistently result in
better transfer accuracy, both when fine-tuning on the full downstream dataset (third column) and in
the few-shot setting (fourth column). Lower pretraining WBIC correlates with better downstream
performance for Top row: larger learning rates, Middle row: smaller batch sizes, and Bottom row:
increased momentum.

7 CONCLUSION AND LIMITATIONS

In this work, we introduced the downstream free energy as a Bayesian model selection criterion for
quantifying the adaptability of pretraining checkpoints, offering a principled way to predict their
performance on unseen downstream tasks. Our key insight is that checkpoints with lower down-
stream free energy are more adaptable, making them ideal candidates for fine-tuning. Our empirical
results validate the utility of the pretraining free energy as a practical checkpoint selection criterion,
especially in scenarios where downstream data is scarce or inaccessible.

Despite the promising results, some limitations remain. First, our analysis currently lacks a direct
link between downstream free energy and downstream predictive performance. At the moment,
we provide a rigorous connection only when downstream adaptation is performed in a Bayesian
manner (see Appendix A). However, while Bayesian deep learning is not yet widely adopted due to
its computational overhead, this link may become valuable as computational barriers are reduced,
particularly in fine-tuning scenarios.

In addition, while our theoretical framework supports the use of free energy as a selection criterion,
the practical computation of free energy, in the form of the pretraining WBIC as in equation 14,

10



remains challenging for large models. An alternative approach may involve identifying computa-
tionally efficient “levers” that influence pretraining free energy, allowing us to improve downstream
adaptation performance without relying on direct computation of the pretraining WBIC.

8 REPRODUCIBILITY STATEMENT

To facilitate the reproduction of our results, we have provided comprehensive details of our ex-
perimental setup, including training procedures, data processing steps, and hyperparameter settings
(e.g., learning rate, batch size, SGD momentum) within the main text and appendix of the paper; see
Section 6 and Appendix B. Our experiments use the publicly available CIFAR-FS dataset Bertinetto
et al. (2018) and the standard ResNet-18 architecture He et al. (2016). Our experiment code is im-
plementated using the JAX library and all experiments were conducted using Google Colab TPUs
which are standardized and readily available hardware platforms.
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A THEORETICAL GUARANTEES ON FINE-TUNING PREDICTIVE
PERFORMANCE

Here we discuss theoretical guarantees on downstream predictive performance when employing the
version of the downstream free energy strategy in equation 9. We would like to give an analysis
of downstream predictive performance without being tied to a specific training algorithm e.g., SGD
with momentum, ADAM, etc. Towards this end, we consider measuring predictive performance
through quantities related to the downstream posterior distribution over neural network weights:

p1(w;w∗, γ) ∝ exp{−mK1(w)}φγ(w − w∗) (15)

This does not mean we are advocating for Bayesian prediction, but rather we believe the poste-
rior distribution above contains highly relevant information that all sensible downstream training
algorithms are sensitive to.
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Since fine-tuning entails finding a small perturbation of said w∗ which performs well on the down-
stream training dataset D1, we might consider an indicator of the downstream training performance
to be given by

Tm(w∗) := Ew∼p1(w;w∗,γ)K̂
1(w). (16)

Let us call equation 16 the downstream Gibbs training error. Let w∗ and γ satisfy assumption
5.1. Then, on average, over the draw of D1, the expected downstream Gibbs training error is given
by

ED1Tm(w∗) = K1(w∗1) +
λ1(w∗)− ν1(w∗)

m
+ o

(
1

m

)
(17)

where ν1(w∗), like the local learning coefficient λ1(w∗), is a positive number called the singular
fluctuation that is an invariant of the underlying model-truth-prior triplet. Since ν1(w∗) is always
positive, the strategy in equation 9 leads us to select a checkpoint that minimizes an upper bound on
ED1Tm(w∗).

We can also look at the population counterpart to equation 16 given by

Gm(w∗) := Ew∼p1(w;w∗,γ)K
1(w) (18)

Let us call equation 18 the downstream Gibbs test error. The expected value of this, over the draw
of D1 is given by

ED1Gm(w∗) := K1(w∗1) +
λ1(w∗) + ν1(w∗)

m
+ o

(
1

m

)
. (19)

It does not appear the strategy in equation 9 gives control over the (expected) downstream Gibbs test
error.

Finally consider the test error resulting from Bayesian model averaging:

GBMA
m (w∗) := Er1(x)DKL(r

1(y|x)||Ew∼p1(w;w∗,γ)p(y|x,w)) (20)

where the expectation over the posterior has been moved inside the logarithm. Let us call equation 20
the downstream Bayes test error. We have that

ED1GBMA
m (w∗) := K1(w∗1) +

λ1(w∗)

m
+ o(

1

m
). (21)

It is evident that the strategy in equation 9 leads us to select a checkpoint that minimizes an upper
bound on ED1GBMA

m (w∗).

B EXPERIMENT DETAILS

This section provides details for the experiment results presented in Figure 1 and Figure 2. For these
experiments we use the CIFAR-FS dataset (Bertinetto et al., 2018) which has been pre-partitioned
into 64 meta-training classes, 14 meta-validation classes and 20 meta-test classes. Each class con-
tains 600 examples. We use the meta-training dataset for pretraining and the meta-test dataset during
fine-tuning. We do not use the meta-validation dataset.

Random seeds To account for stochasticity, we repeat all experiments below with 5 different
random seeds. These seeds control the randomness in the pretraining optimization trajectory, the
train-test split and the fine-tuning optimization trajectory in full meta-test finetuning (Section B.2
below), and the construction of few-shot tasks in few-shot meta-test finetuning (Section B.2 below).
The variability across the random seeds is reflected in Figure 2, although the error bands may not
always be visible due to the wide scale of the y-axis in some cases.

B.1 PRETRAINING DETAILS

We pretrain a ResNet-18 (He et al., 2016) on the CIFAR-FS meta-training dataset (Bertinetto et al.,
2018) using SGD with cross-entropy loss. We vary SGD hyperparameters such as the learning rate,
batch size, and momentum. We use plain SGD optimizer without any regularization nor schedule to
avoid masking effects. We used random crop and random flip for data augmentation. Throughout
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training we report the pretraining train loss on the augmented data (Figure 2 first column) and the
pretraining WBIC computed on the augmented data (Figure 2 second column). Note, we use the
same SGLD hyperparameters to compute the WBIC across all experiments. That is, we use step
size ϵ = 2 × 10−7, chain length of 3,000 iterations, batch size of 2,048, γ = 1.0, and β∗ = 1

logn

where n is the size of the pretraining dataset.

Learning rate. For experiments that vary the learning rate in Figure 2 (top row), for each learning
rate value in {0.05, 0.01, 0.1, 0.2} we run SGD without momentum with a fixed batch size of 512
for 50,000 iterations. The WBIC estimations were performed every 2,000 iterations with the SGLD
hyperparameters above.

Batch size. For experiments that vary the batch size in Figure 2 (middle row), for each batch size
in {16, 32, 64, 128, 256, 512} we run SGD without momentum with a fixed learning rate of 0.05
for 50,000 iterations. The WBIC estimations were performed every 4,000 iterations with the SGLD
hyperparameters above.

Momentum. For experiments that vary the momentum in Figure 2 (bottom row), for each mo-
mentum in {0.0, 0.2, 0.4, 0.6, 0.8} we run SGD with a fixed learning rate of 0.01 and batch size of
512 for 80,000 iterations. The WBIC estimations were performed every 2,000 iterations with the
SGLD hyperparameters above.

B.2 FINE-TUNING DETAILS

We perform fine-tuning in two scenarios: full CIFAR-FS meta-test finetunining which uses all 20
classes of the meta-test set, and few-shot meta-test finetuning which consists of multiple tasks con-
structed from the CIFAR-FS meta-test dataset. In both settings we fine-tune a ResNet-18 model
initializing the weights of the ResNet backbone with the pre-training weights. The weights of the
model head are randomly initialized.

Full meta-test fine-tuning. When fine-tuning on the full CIFAR-FS meta-test dataset, we use all
20 meta-test classes and all 600 examples in each class. We then create an 80/20 train/test split. We
use SGD with L2 regularization rate of 0.01 and with a fixed learning rate of 0.0001 for the model
backbone and a fixed learning rate of 0.01 for the model head. We fine-tune for 100 steps using a
batch size of 128.

Few-shot meta-test fine-tuning. For few-shot fine-tuning, we use only part of the CIFAR-FS
meta-test dataset by sampling 5-class classification tasks randomly from the 20 classes available
in the meta-test dataset. For each of these 5 classes we sample 5 training examples to create a 5-
shot dataset for fine-tuning. During fine-tuning, as with full meta-test fine-tuning, we use a fixed
learning rate of 0.0001 for the model backbone and a fixed learning rate of 0.01 for the model head.
We perform 100 steps of full-batch gradient descent (GD) with L2 regularization rate of 0.001 and
then measure the model performance on 100 random test samples from each class. This constitutes
a single task. Finally, we report the resulting accuracy rates averaged over 100 randomly chosen
tasks.

C EXAMPLES OF PROPOSITION 5.3

In this section we provide two detailed examples involving Gaussian distributions which help to
illustrate Proposition 5.3 in action.

Example 1 (Covariate shift between pretraining and downstream distributions). Suppose r0(y|x) =
r1(y|x) = r(y|x). Our pretraining and fine-tuning joint model is pi(x, y|w) = p(y|x,w)ri(x).
Then we have λ0(w∗) = λ1(w∗) and Ki(w) = Eri(x)K(x,w) where K(x,w) =
DKL(r(y|x)||p(y|x,w)). Writing

Er1(x)K(x,w) =

∫
K(x,w)

r1(x)

r0(x)
r0(x) dx
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we have that if M = maxx∼r0(x)
r1(x)
r0(x) < ∞ then

Er1(x)K(x,w) ≤ MEr0(x)K(x,w)

Putting this together we have D = 0 and

K1(w∗1) ≤ K1(w∗) ≤ MK0(w∗).

Suppose the two covariate distributions are Gaussians

ri(x) ∝ exp{−||x− µi||22
2σ2

i

}

then M is finite if σ0 > σ1, in which case M = σ0

σ1
exp{ (µ0−µ1)

2

2(σ2
0−σ2

1)
}

Example 2 (Nuisance parameter mismatch between pretrain and downstream distributions). Sup-
pose the pretrain (i = 0) and downstream (i = 1) distributions are given by

ri(x, y) = r(y|x,w0, σ
2
i )r(x)

where r(y|x,w0, σ
2
i ) = N(fw0

(x), σ2
i ) with fw(x) representing neural network with weight w. The

pretraining and fine-tuning model are given by

pi(x, y|w) = r(y|x,w, σ2
i )r(x)

Then we have λ0(w∗) = λ1(w∗) and M = σ0/σ1.
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