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Abstract. Variational inference in Bayesian deep learning often involves
computing the gradient of an expectation that lacks a closed-form solu-
tion. In these cases, pathwise and score-function gradient estimators are
the most common approaches. The pathwise estimator is often favoured
for its substantially lower variance compared to the score-function esti-
mator, which typically requires variance reduction techniques. However,
recent research suggests that even pathwise gradient estimators could
bene�t from variance reduction. In this work, we review existing control-
variates-based variance reduction methods for pathwise gradient estima-
tors to assess their e�ectiveness. Notably, these methods often rely on
integrand approximations and are applicable only to simple variational
families. To address this limitation, we propose applying zero-variance
control variates to pathwise gradient estimators. This approach o�ers
the advantage of requiring minimal assumptions about the variational
distribution, other than being able to sample from it.
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1 Introduction

Given an observed dataset D = {xi}Ni=1 governed by a data generating process
that depends on latent variables z ∈ Rdimz and a prior p(z) of these latent vari-
ables, we are often interested in the posterior distribution p(z|D) ∝ p(D|z)p(z).
This posterior is often known only up to a normalising constant and requires
approximation. Variational inference (VI) o�ers a way to approximate the pos-
terior with a simpler, tractable distribution from the variational family Q =
{q(z;λ) : λ ∈ Rdimλ}. This is typically done by minimising the Kullback-Leibler
(KL) divergence from the variational distribution q(z;λ) to p(z|D), expressed as
Eq(z;λ)[log q(z;λ) − log p(z|D)], or equivalently, maximising the evidence lower
bound (ELBO)

λ∗ = argmax
λ

Eq(z;λ)[log p(z,D)− log q(z;λ)],

with respect to the variational parameter λ. This approach is often preferred to
avoid computing the intractable normalising constant of p(z|D).
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The closed-form solution for λ∗ is generally unavailable. Stochastic VI [11],
which optimises with minibatch SGD, has revolutionised and broadened the ap-
plications of VI. It necessitates computing the gradient of the minibatch ELBO,
denoted as mELBO(λ) = Eq(z;λ) [r(z;λ)], where

r(z;λ) =
N

B

∑
i∈batch

[log p(xi|z)] + log
p(z)

q(z;λ)
. (1)

Here N and B are the data and batch size respectively. One challenge in stochas-
tic VI is computing the gradient of mELBO, ∇λEq(z;λ)[r(z;λ)]. As the gradient
is taken with respect to the parameter of q, we cannot simply push the gradi-
ent operator through the expectation, making the computation non-trivial. In
the VI literature, there are two main types of gradient estimators for comput-
ing ∇λEq(z;λ)[r(z;λ)]: 1) the pathwise gradient estimator, also known as
the reparametrization trick; and 2) the score-function estimator, or REIN-
FORCE. The latter has broader applicability but often comes with higher vari-
ance. Indeed, the score-function estimator is almost always used in conjunction
with control variates to reduce its variance [18, 12]. While variance reduction for
the pathwise gradient estimator is less common, recent work suggests it may be
bene�cial [14, 7]. In this work, we are primarily interested in reducing variance
of the pathwise gradient estimator.

The pathwise gradient estimator is readily applicable only to reparametriz-

able distributions q(z;λ). These are distributions where we can generate z equiv-
alently from a transformation z = T (ϵ;λ), where ϵ ∈ Rdim z ∼ q0(ϵ) and q0 is re-
ferred to as the base distribution, independent of λ. For example, a Gaussian dis-
tribution z ∼ N (µ, σ2I) and its corresponding transformation is T (ϵ;λ) = µ+σϵ,
where ϵ follows a standard Gaussian distribution and λ = (µ, σ). When q is
reparametrizable, we can push the gradient operator inside the expectation, giv-
ing us the gradient of mELBO as

g(λ) := ∇λ mELBO(λ) = Eq0(ϵ)φ(ϵ;λ), (2)

where we de�ne φ(ϵ;λ) = ∇λ [r(T (ϵ;λ);λ)]. The pathwise gradient estimator is
then a Monte Carlo estimator of (2) using samples {ϵ[l]}Ll=1 from q0

ĝ(ϵ[1], . . . , ϵ[L];λ) :=
1

L

L∑
l=1

φ(ϵ[l];λ). (3)

We will refer to L as the number of gradient samples.
The variance of the gradient estimator V[ĝ] = E∥ĝ∥2 − ∥Eg∥2 = 1

LV[φ] is
thought to play a signi�cant role in the convergence properties of the mELBO
optimizer. Here, the expectations and variances are taken with respect to q0 �
from this point on, any expectations or variances without a subscript refer to q0.
To reduce the variance of (3), we can add a control variate (CV), c(·) ∈ Rdimλ ,
to the pathwise gradient estimator

1

L

L∑
l=1

[
φ(ϵ[l];λ) + c(ϵ[l])

]
, (4)
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where the CV is a random variable with zero expectation, that is, E[φ+c] = Eφ.
Let Tr(C[φ, c]) denote the trace of the covariance matrix C[φ, c] = E[(φ−Eφ)(c−
Ec)⊤]. A good CV should exhibit a strong, negative correlation with φ, since

V[L−1
∑L

l=1 φ(ϵ[l];λ) + c(ϵ[l])] = V[ĝ] + L−1(V[c] + 2Tr(C[φ, c])) (5)

Therefore, as long as Tr(C[φ, c]) < 0 and |Tr(C[φ, c])| < 1
2V[c], the CV-adjusted

gradient estimator (4) will exhibit a smaller variance than (3). Finally, we can
form a CV as a linear combination of multiple CVs. Let C : Rdimz → Rdimλ×J

be a matrix with J CVs as its columns. This leads to the CV-adjusted gradient
estimator

ĝ(ϵ[1], . . . , ϵ[L];λ) :=
1

L

L∑
l=1

[
φ(ϵ[l];λ) + C(ϵ[l])β

]
, (6)

which remains a valid CV due to the linearity of expectation operators. Here
β ∈ RJ is a vector of coe�cients corresponding to each CV. This construction
allows us to combine several weak CVs into a stronger one by adjusting β.

For obvious reasons, applying CV is only worthwhile if its computation is
cheaper than increasing the number of samples in (3). From (5), we see that
the estimator variance can be halved either by doubling L or halving V[φ + c].
This poses a unique challenge when applying CV in the low L regime (common
in VI where L is often very low), as the cost of CV may outweigh the cost of
increasing L for the same variance reduction. CVs developed for Markov Chain
Monte Carlo (MCMC) do not easily apply here because 1) they require large L,
but L can be as small as one in stochastic VI, and 2) MCMC variance reduction
is typically done at the very end, whereas in stochastic VI, it's needed for each
gradient update.

Contribution This work reviews existing CV-adjusted pathwise gradient esti-
mators in the context of VI, primarily examining whether employing CV leads
to faster convergence in terms of wall-clock time. We are also motivated by the
gap in VI literature on gradient variance reduction when q is reparametrizable,
but its mean and covariance are not available in closed form. A good example is
normalizing �ow, where z is the result of pushing a base distribution q0 through
an invertible transformation T (·;λ) parameterised by λ, i.e. z = T (ϵ;λ) where
ϵ ∼ q0. This transformation can be arbitrarily complex and often involves neural
networks. To address this, we introduce a CV-adjusted gradient estimator based
on zero-variance control variates (ZVCV) [1, 15, 16], which doesn't have this
limitation.

This paper is structured as follows: Section 2 reviews the latest advance-
ments in variance reduction techniques for pathwise gradient estimators in VI.
Sections 3 and 4 discuss methods for selecting β and C respectively. The novel
ZVCV-based method is introduced in Section 4.2. Finally, experimental results
are presented in Section 5.



4 Ng and Wei

2 Related Work

Variance reduction for the pathwise gradient estimator in VI has been explored
in [14] and [7]. These works focused on designing a single CV (i.e. C has only
one column) with the form C = Eφ̃− φ̃, where φ̃(ϵ;λ) approximates φ(ϵ;λ). The
expectation Eφ̃ is intended to be theoretically tractable, but this usually places
restrictions on T (and therefore, q).

For instance, [14] proposed a φ̃ based on the �rst-order Taylor expansion
of ∇z log p(z,D). However, this necessitates the expensive computation of the
Hessian ∇2

z log p(z,D). [7] improved upon this by using a quadratic function
to approximate log p(z,D). Their method only requires the �rst-order gradient
∇z log p(z,D), and their Eφ̃ has a closed-form solution as a function of the mean
and covariance of q. This method can be further extended to accommodate q
without a closed-form mean and covariance by estimating Eφ̃ empirically; see
Section 4.1 for details. In both of these work, they focused on Gaussian q.

Our proposed estimator based on ZVCV shares similarities with another
work from the same group in [7]. Like [6], we propose combining weak CVs into
a stronger one. However, our work di�ers in how we construct individual CVs
and the optimisation criterion for β.

3 Selecting β for CV-adjusted pathwise gradient

estimators

The utility of CV depends on the choice of β and C in (6). In this section, we
will discuss various strategies to pick an appropriate β given a family of C.

3.1 A unique set of β for each dimension of λ

The formulation in (6) suggests that the same set of β is used across the dimen-
sions of φ. This can be too restrictive for C that are weakly-correlated to φ. In
such instance, having a unique set of β coe�cients for each dimension of φ can
be bene�cial, as it allows the coe�cients to be selected on a per-dimension basis.
In fact, this can be easily done by turning C into a dimλ× (Jdimλ)-dimensional,
block diagonal matrix diag(C1,:, . . . , Cdimλ,:), where Ci,: is the ith row of the
original C. In other words, we expand the number of CV to Jdimλ, and each
CV will only reduce the variance of a single dimension of φ.

3.2 Optimisation criteria for β

The β is usually chosen to minimise the variance of ĥ. In practice, this variance
is evaluated empirically due to the lack of its closed-form expression. There are
three approaches in the literature, the �rst of which is a direct approximation
of the variance with samples {ϵ[l]}Ll=1,

V[φ+ Cβ] ≈ 1
L(L−1)

∑
l>l′∥φ(ϵ[l]) + C(ϵ[l])β − φ(ϵ[l′])− C(ϵ[l′])β∥2,
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as seen in [2]. The second approach is based on the de�nition of variance

V[φ+Cβ] = E∥φ−E[φ+Cβ]+Cβ∥2 ≈ min
α∈Rdimλ

1
L

∑L
l=1∥φ(ϵ[l])+α+C(ϵ[l])β∥2,

(7)
where α ∈ Rdimλ is an intercept term in place of the unknown E[φ + Cβ].
This is cheaper to compute than the former as it only requires O(L) operations
rather than O(L2) [19]. Finally, the third approach relies on the assumption that
E[Cβ] = 0 and is based on the observation that V[φ+Cβ] = E∥φ+Cβ∥2−∥Eφ∥2.
This suggests that V[φ + Cβ] can be equivalently minimised by solving β∗ =
argminβ E∥φ+ Cβ∥2, the solution of which is given

β∗ = −E[C⊤C]−1E[C⊤φ]. (8)

See [6] for the derivation. This approach, however, often requires estimating the
expectations empirically and performing a costly inversion of size J matrix.

In the development of our CV, we focus on the second approach (7) as this
is generally the cheapest among the three. This approach is also equivalent to
solving a linear least squares problem[

α∗

β∗

]
= argmin

α,β

L∑
l=1

∥∥∥∥φ(ϵ[l]) + [Idimλ
C(ϵ[l])

] [α
β

]∥∥∥∥2 , (9)

and has a unique and closed-form solution when the corresponding design matrix
is full-column rank. Even when such condition is not satis�ed, a penalty term
can be added to the objective function of (9) and we end up with a penalised
least squares problem [21]. Alternatively, we can solve (9) with an iterative op-
timisation algorithm to obtain a (non-unique) solution [19].

4 Control variates

Having reviewed methods to select β given a family of C, we now turn our
attention to constructing C. We will �rst propose a simple modi�cation of [7]
that will enable it to work for variational distributions q with unknown mean
and covariance. Subsequently, we will introduce ZVCV, which can be constructed
without the knowledge of q or T .

4.1 Quadratic approximation control variates

In this section, we review the quadratic-approximation CV proposed in [7]. An
important distinction at the outset is their assumption that the entropy term in
mELBO, −Eq(z) log q(z;λ), is known. As such the focus of [7] is to reduce the
variance of E∇λf(T (ϵ;λ)), where

f(z) =
N

B

∑
i∈batch

[log p(xi|z)] + log p(z). (10)
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The CV is based on the quadratic approximation of (10), f̃(z; v) = b⊤v (z− z0)+
1
2 (z − z0)

⊤Bv(z − z0), and has the form of

C(ϵ) = E[∇λf̃(T (ϵ;λ))]−∇λf̃(T (ϵ;λ)). (11)

Here, v = {Bv, bv} are the parameters of the quadratic equation that are chosen
to minimise the L2 di�erence between ∇f(z) and ∇f̃(z). We will drop v in f̃ for
the sake of brevity. The location parameter z0 is set to ET (ϵ;λ). This quadratic
approximation of f can also be viewed as a linear approximation on ∇f .

The �rst term in (11) has a closed-form expression that depends on the mean
and covariance of q(z;λ), making the expectation cheap to evaluate when they
are readily available. However, this is not the case when T (ϵ;λ) is arbitrarily
complex, e.g. normalizing �ow. A direct workaround of this limitation is to re-
place E∇λf̃(T (ϵ;λ)) with its empirical estimate based on samples of ϵ. Note that
f̃ requires z0 = ET (ϵ;λ), which we estimate using another independent set of ϵ.
See Algorithm 1 for a summary of the procedure.

As (10) is a part of the Monte Carlo estimator (6), it could be tempting to
estimate E∇λf̃(T (ϵ;λ)) with an average of the ∇λf̃(T (ϵ;λ)) evaluations that
have been computed in (6). This is to be avoided as it will result in the two
terms in (11) cancelling each other out.

As (11) is designed to be strongly correlated with φ when f̃ is reasonably
close to f , the choice of β becomes less signi�cant. [7] opted to minimise the
expected squared norm with a scalar β (note that C is a column vector in this
case), the solution of which is given in (8). In their work, the expectations E[C⊤φ]
and E[CTC] are replaced with their empirical estimates computed from C and
φ in (6), instead of fresh evaluations. However, the resulting gradient estimate is
biased due to the dependency of between β and C, as E[C(ϵ)β(ϵ)] ̸= 0 in general.

While this bias is not mentioned explicitly in [7], we conjecture that they
overcame the issue by estimating the expectations with C and φ computed from
previous iterations, as speci�ed in Algorithm 1. Therefore, their β is independent
from C in the current iteration. This will avoid introducing bias to the gradient
estimate at the cost of having sub-optimal β. They also claimed that their esti-
mates of E[C⊤φ] and E[CTC] (and by extension, β) do not di�er much across
iterations. Moreover, their β is largely acting as an auxiliary `switch' of the CV
when f̃ is a poor approximation of f , rather than the primary mechanism to
reduce the estimator variance, since the β will be almost 0 when f̃ is not ap-
proximating well (i.e. C[φ,C] ≈ 0). Their C only kicks in when it is su�ciently
correlated to φ.

Lastly, we return to the discussion of the entropy term at the beginning of
this section. Our setup is more general than [7] as we does not assume the en-
tropy term −Eq(z) log q(z;λ) to necessarily have a closed-form expression, i.e. our
r(z, λ) includes − log q(z;λ). Although it was claimed in [7] that their quadratic
approximation CV can also be similarly designed for r(z, λ) in (1) rather than
f(z, λ) in (10), we found the implementation di�cult because the updating step
of v requires the gradient ∇z log q(z;λ), and in turn ∂λ

∂z , which is challenging to
compute.
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4.2 Zero-variance control variates

The CV in [7] require one to know the mean and covariance of q(z;λ). To avoid
this requirement, we propose the use of gradient-based CV [1, 15, 16]. These
CV are generated by applying a Stein operator L to a class of user-speci�ed
functions P (z). Typically the Stein operator uses∇z log q(z), the gradients of the
log probability density function for the distribution over which the expectation
is taken, but it does not require any other information about φ or T .

We will focus on the form of gradient-based CV known as ZVCV [1, 15].
ZVCV uses the second order Langevin Stein operator and a polynomial P (z) =∑J

j=1 βjPj(z), where Pj(z) is the jth monomial in the polynomial and J is the
number of monomials. The CV are

{LPj(z)}Jj=1 = {∆zPj(z) +∇zPj(z) · ∇z log q(z)}Jj=1,

where ∆z is the Laplacian operator and q(z) is the probability density function
for the distribution over which the expectation is taken. A su�cient condition
for these CV to have zero expectation is that the tails of q decay faster than a
polynomial rate [17, Appendix B], which is satis�ed by Gaussian q for example.

In this paper, we only consider �rst-order polynomials, so there are J = dimz

CV of the form
{

∂
∂zj

log q(z)
}dimz

j=1
. Here, zj refers to the j

th dimension of z. We

do not �nd second-order polynomials to have any advantage over �rst-order
polynomials; see Appendix G for a discussion. For pathwise gradient estimators
using a standard Gaussian as the base distribution, these CV simplify further to
{−ϵj}dimz

j=1 . We are also using the same set of CV across di�erent dimensions of
φ, but assigning each dimension with a unique set of β. That is, the matrix C
is a block-diagonal matrix C(ϵ) = diag(−ϵ⊤, . . . ,−ϵ⊤) of size dimλ× dimλdimz.
This is in contrast to [7] where the values in C is di�erent across dimensions,
but their β is shared. The simplicity of ZVCV comes with the drawback that it
is often not as correlated as the integrand. This makes the choice of β crucial.

Estimating β with the least squares approach As discussed in Section 3,
the unique, closed-form solution of (9) requires the corresponding design matrix
to have a full column rank. In our application where the models often has dimz

much greater than L, this is not the case as the corresponding design matrix is
very wide. While this problem can be solved by adding a penalty term in (9) to
shrink β towards 0 [6, 21], solving penalised least squares remains prohibitively
expensive as it still involves inverting a matrix of size dimz. Instead, we propose
mimicking penalised least squares by minimising (9) with respect to α and β
with gradient descent. This is done by

1. Initialise α at − 1
L

∑L
l=1 φ(ϵ[l]) and β at the zero vector. Set γ(α,β) to a low

value;
2. Take a descent step (αm+1, βm+1)← (αm, βm)−γ(α,β) 1

L

∑L
l=1∇α,β∥φ(ϵ[l])+

αm + C(ϵ[l])βm∥2;
3. Repeat Step 2 for a few times.
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See Algorithm 2 for a complete description. The combination of learning rate
and number of iterations is analogous to the penalty in penalised least squares:
a lower number of iterations and learning rate γ(α,β) will result in a near-zero
β that results from a stronger penalty (more shrinkage of β towards 0). This
procedure is also similar in spirit to [19].

5 Experiments

In these experiments, we assess the e�cacy of various gradient estimators by
performing VI on the following model-dataset pairs: logistic regression on the
a1a dataset, a hierarchical Poisson model on the frisk dataset, and a Bayesian
neural network (BNN) on a subset of the redwine dataset. For the BNN model,
we consider both full-batch and mini-batch (size 32) gradient estimators. We
utilise diagonal and low-rank Gaussian distributions, as well as Real NVP [4] as
our variational family q. Additionally, we vary the number of gradient samples,
setting L = 10 and 50, and compare three types of estimators: the vanilla es-
timator without any CV (NoCV), ZVCV-GD as described in Section 4.2, and
QuadCV proposed by [7]. We report the ELBO, wall-clock time, and variance
of the gradient estimators. Comprehensive setup details are provided in Ap-
pendix B.

ELBO against wall-clock time To assess whether the computational expense
of calculating CV or additional gradient samples justi�es the potential improve-
ment in ELBO, we measure ELBO against wall-clock time, as illustrated in Fig-
ure 1. Our experiments reveal that NoCV generally converges to a respectable
ELBO more swiftly. Furthermore, the performance gap between the estimators
is even narrower when L = 50. An unexpected observation is that increasing
L from 10 to 50 incurs negligible computational cost but produce meaningfully
faster convergence, as evident when comparing the top and bottom rows of Fig-
ure 1a and 1b. It is important to note that the computational cost of extra
gradient samples may vary depending on the construction of φ, and increasing
L might not always be a worthwhile strategy for achieving faster convergence
(see, for example, the BNNs experiments in Figure 4b of Appendix D).

QuadCV does succeed in increasing the maximum achievable ELBO in cer-
tain scenarios, albeit at the expense of longer convergence times. For instance,
QuadCV can improve ELBO by approximately 0.7 nats and 6 nats in hierarchi-
cal Poisson and full-batch BNN when using a mean-�eld Gaussian q at L = 10.
However, this comes at a cost of roughly 50% to 100% more runtime compared
to NoCV. Given �nite computational resources and the absence of a universal
guarantee that a slight ELBO increase will substantially enhance downstream
metrics [24, 23, 5, 13, 3], it is left to practitioners to determine whether imple-
menting CV is a worthwhile endeavour.

Additional experiments In addition to our main results, we present further
�ndings in the Appendix to explore the e�cacy of CV under various settings.
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Speci�cally, Appendix C examines ELBO and variance reduction against itera-
tion count, Appendix D explores low-rank Gaussian as q, Appendix E presents
mean curves of ELBO, Appendix F provides an individual analysis of each curve,
and Appendix G investigates di�erent variants of ZVCV. Overall, we �nd that
while CV can reduce variance in the gradient estimator, the computational over-
head does not justify its implementation compared to simply increasing the
number of gradient samples.
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(a) Mean-�eld Gaussian with 10 (top) and 50 (bottom) gradient samples.
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(b) Real NVP with 10 (top) and 50 (bottom) gradient samples.

Fig. 1: ELBO is plotted against wall-clock time for di�erent numbers of gradient
samples L and two families of q. The bold lines represent the median of ELBO
values recorded at the same iteration across �ve repetitions. The shaded area
illustrates the range of ELBO values across �ve repetitions. The ELBO values
are smoothed using an exponential moving average. A higher ELBO indicates
better performance. See Figure 8 for plots where the bold lines represent the
mean ELBO.
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6 Conclusion

In our study of the pathwise gradient estimator in VI, we reviewed the state-
of-the-art CV for reducing gradient variance, namely the QuadCV in [7]. We
identi�ed a gap in the literature regarding variance reduction of pathwise gradi-
ent estimators in stochastic VI when the variational distribution has intractable
mean and covariance, making QuadCV not directly applicable. To address this,
we proposed using ZVCV, which does not assume speci�c conditions on the
variational distribution.

However, our empirical results showed that neither the ZVCV-adjusted nor
the QuadCV-adjusted estimator provided substantial improvement in our eval-
uation metrics to justify their implementation. Instead, we found that simply
increasing the number of gradient samples was highly e�ective for improving
convergence time.

Stepping back, it is worth discussing the fundamental value of variance re-
duction for pathwise gradient estimators in stochastic VI. Interestingly, a dra-
matic reduction in gradient variance may not lead to any noticeable e�ect on the
ELBO. This was observed in our experiments � even with a substantially lower
variance, the CV-adjusted gradient estimator did not meaningfully improve the
ELBO optimization objective compared to the vanilla gradient estimator. We
can thus expect that downstream metrics, such as log predictive density, will
also reveal the general ine�ectiveness of equipping the gradient estimator with a
CV. These �ndings seem to indicate a negative phenomenon for pathwise gradi-
ents in stochastic VI: reducing gradient variance alone is insu�cient to improve
downstream performance.

In future work, we hope to explore ZVCV-adjusted gradient estimators in
generative models where they may excel. ZVCV is particularly powerful when
the distribution of interest is di�cult to sample from, such as in energy-based
models [20]. Additionally, implicit VI methods require the variational distribu-
tion to be reparametrizable but not the pathwise score, ∇z log q(z;λ), to be
known (e.g. as in normalizing �ows). [22] showed that the pathwise score can
be written as an expectation, ∇z log q(z;λ) = Eq(ϵ|z;λ)∇z log q(z|ϵ;λ), where
q(ϵ|z;λ) is the reverse conditional. In [22], the expectation with respect to the
reverse conditional is based on MCMC samples. We could potentially improve
e�ciency by employing ZVCV here.

7 Acknowledgment

The authors would like to thank Leah South for her valuable discussions on the
project. KN was supported by the Australian Government Research Training
Program Scholarship and the Fred Knight Scholarship. SW was supported by
the ARC Discovery Early Career Researcher Fellowship (DE200101253).



Bibliography

[1] Assaraf, R., Ca�arel, M.: Zero-Variance Principle for Monte Carlo Al-
gorithms. Physical Review Letters 83(23), 4682�4685 (Dec 1999). https:
//doi.org/10.1103/PhysRevLett.83.4682

[2] Belomestny, D.V., Iosipoi, L.S., Zhivotovskiy, N.K.: Variance Reduction
in Monte Carlo Estimators via Empirical Variance Minimization. Dok-
lady Mathematics 98(2), 494�497 (Sep 2018). https://doi.org/10.1134/
S1064562418060261

[3] Deshpande, S., Ghosh, S., Nguyen, T.D., Broderick, T.: Are you using test
log-likelihood correctly? In: I Can't Believe It's Not Better Workshop: Un-
derstanding Deep Learning Through Empirical Falsi�cation (Dec 2022)

[4] Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP.
In: International Conference on Learning Representations (2017)

[5] Foong, A., Burt, D., Li, Y., Turner, R.: On the Expressiveness of Approxi-
mate Inference in Bayesian Neural Networks. In: Advances in Neural Infor-
mation Processing Systems. vol. 33, pp. 15897�15908. Curran Associates,
Inc. (2020)

[6] Ge�ner, T., Domke, J.: Using Large Ensembles of Control Variates for Vari-
ational Inference. In: Advances in Neural Information Processing Systems.
vol. 31. Curran Associates, Inc. (2018)

[7] Ge�ner, T., Domke, J.: Approximation Based Variance Reduction for Repa-
rameterization Gradients. In: Advances in Neural Information Processing
Systems. vol. 33, pp. 2397�2407. Curran Associates, Inc. (2020)

[8] Gelman, A., Fagan, J., Kiss, A.: An Analysis of the New York City Police
Department's �Stop-and-Frisk� Policy in the Context of Claims of Racial
Bias. Journal of the American Statistical Association 102(479), 813�823
(Sep 2007). https://doi.org/10.1198/016214506000001040

[9] Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin,
D.B.: Bayesian Data Analysis. CRC Press, third edn. (2013)

[10] Glorot, X., Bengio, Y.: Understanding the di�culty of training deep feed-
forward neural networks. In: Proceedings of the Thirteenth International
Conference on Arti�cial Intelligence and Statistics. pp. 249�256. JMLR
Workshop and Conference Proceedings (Mar 2010)

[11] Ho�man, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic Variational
Inference. Journal of Machine Learning Research 14(40), 1303�1347 (2013)

[12] Ji, G., Sujono, D., Sudderth, E.B.: Marginalized Stochastic Natural Gra-
dients for Black-Box Variational Inference. In: Proceedings of the 38th In-
ternational Conference on Machine Learning. pp. 4870�4881. PMLR (Jul
2021)

[13] Masegosa, A.: Learning under Model Misspeci�cation: Applications to Vari-
ational and Ensemble methods. In: Advances in Neural Information Process-
ing Systems. vol. 33, pp. 5479�5491. Curran Associates, Inc. (2020)

https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1134/S1064562418060261
https://doi.org/10.1134/S1064562418060261
https://doi.org/10.1134/S1064562418060261
https://doi.org/10.1134/S1064562418060261
https://doi.org/10.1198/016214506000001040
https://doi.org/10.1198/016214506000001040


12 Ng and Wei

[14] Miller, A., Foti, N., D' Amour, A., Adams, R.P.: Reducing Reparameter-
ization Gradient Variance. In: Advances in Neural Information Processing
Systems. vol. 30. Curran Associates, Inc. (2017)

[15] Mira, A., Solgi, R., Imparato, D.: Zero variance Markov chain Monte Carlo
for Bayesian estimators. Statistics and Computing 23(5), 653�662 (Sep
2013). https://doi.org/10.1007/s11222-012-9344-6

[16] Oates, C.J., Girolami, M., Chopin, N.: Control functionals for Monte Carlo
integration. Journal of the Royal Statistical Society. Series B (Statistical
Methodology) 79(3), 695�718 (2017)

[17] Oates, C.J., Papamarkou, T., Girolami, M.: The Controlled Thermody-
namic Integral for Bayesian Model Evidence Evaluation. Journal of the
American Statistical Association 111(514), 634�645 (Apr 2016). https:
//doi.org/10.1080/01621459.2015.1021006

[18] Ranganath, R., Gerrish, S., Blei, D.M.: Black Box Variational Inference.
In: Proceedings of the Seventeenth International Conference on Arti�cial
Intelligence and Statistics. pp. 814�822. PMLR (Apr 2014)

[19] Si, S., Oates, Chris.J., Duncan, A.B., Carin, L., Briol, F.X.: Scalable Con-
trol Variates for Monte Carlo Methods Via Stochastic Optimization. In:
Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods. pp. 205�221.
Springer Proceedings in Mathematics & Statistics, Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-98319-2_10

[20] Song, Y., Kingma, D.P.: How to Train Your Energy-Based Models (Feb
2021)

[21] South, L.F., Oates, C.J., Mira, A., Drovandi, C.: Regularized Zero-Variance
Control Variates. Bayesian Analysis -1(-1), 1�24 (Jan 2022). https://doi.
org/10.1214/22-BA1328

[22] Titsias, M.K., Ruiz, F.: Unbiased Implicit Variational Inference. In: Pro-
ceedings of the Twenty-Second International Conference on Arti�cial Intel-
ligence and Statistics. pp. 167�176. PMLR (Apr 2019)

[23] Yao, J., Pan, W., Ghosh, S., Doshi-Velez, F.: Quality of Uncertainty
Quanti�cation for Bayesian Neural Network Inference (Jun 2019). https:
//doi.org/10.48550/arXiv.1906.09686

[24] Yao, Y., Vehtari, A., Simpson, D., Gelman, A.: Yes, but Did It Work?:
Evaluating Variational Inference. In: Proceedings of the 35th International
Conference on Machine Learning. pp. 5581�5590. PMLR (Jul 2018)

https://doi.org/10.1007/s11222-012-9344-6
https://doi.org/10.1007/s11222-012-9344-6
https://doi.org/10.1080/01621459.2015.1021006
https://doi.org/10.1080/01621459.2015.1021006
https://doi.org/10.1080/01621459.2015.1021006
https://doi.org/10.1080/01621459.2015.1021006
https://doi.org/10.1007/978-3-030-98319-2_10
https://doi.org/10.1007/978-3-030-98319-2_10
https://doi.org/10.1214/22-BA1328
https://doi.org/10.1214/22-BA1328
https://doi.org/10.1214/22-BA1328
https://doi.org/10.1214/22-BA1328
https://doi.org/10.48550/arXiv.1906.09686
https://doi.org/10.48550/arXiv.1906.09686
https://doi.org/10.48550/arXiv.1906.09686
https://doi.org/10.48550/arXiv.1906.09686


Title Suppressed Due to Excessive Length 13

A Implementation details

We present the implementation details and pseudocode in this section.

A.1 Potential bias in the gradient estimator

The unbiasedness of the CV-adjusted Monte Carlo estimator (6) relies on the
assumption that the β are independent of C, since E[C(ϵ)β(ϵ)] ̸= 0 in general.
This necessitates that β and C should be estimated with independent sets of
ϵ samples. However, in practice, the β is estimated with the same set of ϵ in
C to save computational time at the cost of introducing bias in the gradient
estimates.

Algorithm 1 Quadratic approximation control variates with empirical esti-
mates of Ef̃
Require: Learning rates γ(λ), γ(v).
Initialise λ, v and control variate weight β = 0.
for k = 0, 1, 2, · · · do
Sample ϵ[1], . . . ϵ[L] ∼ q0 to compute φ(ϵ[l];λk)
Generate an independent set of 100 ϵ samples to estimate z0 = ET (ϵ;λ)
Generate an independent set of 100 ϵ samples to estimate E∇λf̃(T (ϵ;λ); vk)
Compute h = 1

L

∑L
l=1

[
φ(ϵ[l];λk) + C(ϵ[l])β

]
See (11)

Take an ascent step λk+1 ← λk + γ(λ)h
Estimate E[C⊤C] and E[C⊤φ] with ϵ[1], . . . ϵ[L], and update β with (8).

Take a descent step vk+1 ← vk − γ(v) 1
2L

∑L
l=1∇v∥∇zf(T (ϵ[l];λk)) −

∇z f̃(T (ϵ[l];λk); vk)∥2
end for

B Experiment Setup

B.1 Models and datasets

We perform VI on the following model-dataset pairs: logistic regression on the
a1a dataset, a hierarchical Poisson model on the frisk dataset, and Bayesian
neural network (BNN) on the redwine dataset. For the BNN model, we consider
a full-batch gradient estimator trained on a subset of 100 data points of the
redwine dataset following the experimental setup in [7] and [14]. We also consider
a mini-batch estimator of size 32 but trained on the full redwine datasets. With
the exception of mini-batch BNN, these models appeared in either [7] or [14].
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Algorithm 2 ZVCV-GD

Require: Learning rates γ(λ), γ(α,β).
Initialise λ
for k = 0, 1, 2, · · · do
Sample ϵ[1], . . . ϵ[L] ∼ q0
Compute φ(ϵ[l];λk),∀l = 1, . . . , L See (2)

Initialise α0 = − 1
L

∑L
l=1 φ(ϵ[l];λk) and β0 at the zero vector

for m = 0, 1, 2, · · · do
Take a descent step (αm+1, βm+1)← (αm, βm)−γ(α,β) 1

L

∑L
l=1∇α,β∥φ(ϵ[l];λk)+

αm + C(ϵ[l])βm∥2
end for

Set β∗ as the �nal value of β from the previous inner loop
Compute h = 1

L

∑L
l=1 φ(ϵ[l];λk) + C(ϵ[l])β

∗

Take an ascent step λk+1 ← λk + γ(λ)h.
end for

Logistic regression with the a1a dataset We extracted the a1a dataset from the
repository hosting [7]. We used the full dataset {xi, yi}1605i=1 and 90% of the
dataset for training. The response yi is binary and is modelled as

w0,w ∼ N (0, 102)

p(yi|xi, z) = Bernoulli

(
1

1 + exp(−w0 −wTxi)

)
,

where z = {w0,w} and dimz = 120. The size of training and test sets are 1440
and 165 respectively.

Hierarchical Poisson regression with the frisk dataset This example is coming
from [8]. We only used a subset of data (weapon-related crime, precincts with
10%-40% of black proportion), as in [14] and [7]. The response yep denotes the
number of frisk events due to weapons crimes within an ethnicity group e in
precinct p over a 15-months period in New York City:

µ ∼ N (0, 102)

log σα, log σβ ∼ N (0, 102)

αe ∼ N (0, σ2
α)

βp ∼ N (0, σ2
β)

log λep = µ+ αe + βp + logNep

p(yep|z) = Poisson(λep),

where z = {α1, α2, β1, . . . , β32, µ, log σα, log σβ} and dimz = 37. Nep is the
(scaled) total number of arrests of ethnicity group e in precinct p over the same
period of time. We do not split out a test set due to its small size (total data
size is 96).

https://github.com/tomsons22/ABVRR/blob/main/src/datasets/a1a
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Bayesian neural network with the redwine dataset We push a vector input xi

through a 50-unit hidden layer and ReLU activation's to predict wine quality.
The response yi is an integer from 1 to 10 (inclusive) measuring the score of red
wine. We place an uniform improper prior on the log-variance of the weights and
error [9, Section 5.7]:

p(logα2) ∝ 1, equivalent to p(α) ∝ α−1

p(log τ2) ∝ 1, equivalent to p(τ) ∝ τ−1

wi ∼ N (0, α2), i = 1, . . . , 651

yi|xi,w, τ ∼ N (ϕ(x,w), τ2)

where ϕ is a multi-layer perception. Here, z = {logα2, log τ2,w} and dimz = 653.
For full-batch gradient descent, we use two mutually exclusive subsets of 100 data
point as train and test sets, as in [14] and [7]. For mini-batch gradient descent,
we use 90% of the full dataset for training and the rest for testing (size of train
and test sets are 1431 and 168 respectively).

B.2 Variational families

Three classes of variational families are considered:

� Mean-�eld Gaussian The covariance of the Gaussian distribution N (µ,Σ)
is parameterised by log-scale parameters, i.e.Σ = diag (exp(2 log σ1, . . . , 2 log σdimz )).

� Rank-5 Gaussian The covariance of the Gaussian distribution N (µ,Σ) is
parameterised by a factor F ∈ Rdimz×5 and diagonal components, i.e. Σ =
FF⊤ + diag (exp(2 log σ1, . . . , 2 log σdimz

)).

� Real NVP We use a real NVP normalizing �ow [4] with two coupling
layers and compose the layers in alternate pattern. The �ow has a standard
multivariate Gaussian as its base distribution. The scale and translation
networks have the same architecture of 8× 16× 16 hidden units with ReLU
activations, followed by a fully connected layer. There is an additional tanh
activation at the tail of the scale network to prevent the exponential term
from blowing up.

We only present the results for mean-�eld Gaussian and real NVP in the main
section. The results for rank-5 Gaussian are included in Appendix D, as they
are largely similar to those obtained for mean-�eld Gaussian.

B.3 Optimiser and learning rate

We use an Adam optimiser and set its learning rate γ(λ) = 0.01, except for the
BNN models with real NVP where we set γ(λ) = 0.001. These learning rates
have been selected as the most best options, in terms of convergence time to a
respectable ELBO, from the set of {0.1, 0.01, 0.001, 0.0001}.
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B.4 Initialisations

We repeated the experiment �ve times, each time using di�erent initialisations
of λ to assess the convergence performance of each method under varying initial
conditions. For the mean-�eld Gaussian, the λ values were randomly sampled
from a zero-mean Gaussian distribution with a scale parameter of 0.5. In con-
trast, for real NVP, we initialised the λ values using a Glorot normal initialiser
[10]. These choices of initialisers were made deliberately to ensure a wide range
of initial values, covering both favourable and unfavourable starting points. Con-
sequently, we expect to observe a diverse range of ELBO trajectories.

B.5 Control variates

The gradient estimator is equipped with the following control variate strategies:

� NoCV The vanilla gradient estimator without any control variates.

� ZVCV-GD A ZVCV with β minimising least squares with an inner gradient
descent, as described in Algorithm 2 and Section 4.2. We set the learning
rate γ(α,β) = 0.001 and iterated the inner gradient descent 4 times for each
outer Adam step. These hyperparameter choices may not always yield the
maximum variance reduction in every situation, but they represent a good
compromise with computation time. Additionally, we have discovered that
prolonging the inner gradient descent iterations does not necessarily lead to
better variance reduction. For a more comprehensive discussion, please refer
to Appendix G.

� QuadCV This is the original algorithm presented in [7] when q is Gaussian
(i.e. the mean and covariance of q are readily available). When q is real NVP,
we use Algorithm 1 and 100 samples to estimate ET (ϵ;λ) and E∇λf̃(T (ϵ;λ)).
The learning rate γ(v) is set to γ(λ), following the original work.

Note that above we only compare our method in detail with [7] as it is a direct
improvement of [14].

B.6 Evaluation settings

ELBO The ELBO for evaluation purpose is always computed with the full
dataset (even when using mini-batched ELBO for optimisation) and 500 samples
from q.

Wall-clock time We timed our VI implementation in JAX and ran on an Nvidia
A100 80GB GPU. It is worth noting that recorded times may vary among com-
puting platforms and implementations, given that our code was compiled with
XLA (resulting in platform-dependent binaries) and ran without memory con-
straints.
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Variance ratio We also present the variance ratio, V[ĥ]/V[ĝ] where ĝ and ĥ
as de�ned in (3) and (6) respectively, in every 50 iterations; a ratio less than
1 indicates a reduction in variance relative to the corresponding NoCV with
the same number of L. The variance of the gradient estimators is computed by
repeatedly sampling 100 gradients (say, ĝ[1], . . . , ĝ[100]) from the estimator and

computed with V[ĝ] ≈ 1
100

∑
j∥ĝ[j] − ( 1

100

∑
i ĝ[i])∥2.

Computation of variance ratio The variance ratio V[ĥ]/V[ĝ] was computed with
the following step:

1. Collect 100 samples of ĝ resulting in {ĝ[j]}100j=1;
2. For each ĝ[j], compute its corresponding control-variate-adjusted gradient

estimate ĥ (6) to collect {ĥ[j]}100j=1;

3. Estimate V[ĝ] ≈ 1
100

∑
j∥ĝ[j]−(

1
100

∑
i ĝ[i])∥2. Repeat the same step for V[ĥ];

4. Calculate the ratio V[ĥ]/V[ĝ].

This ratio is designed to evaluate the e�ectiveness of control variates in re-
ducing variance relative to a corresponding gradient estimator without control
variates. Therefore, in our work, the ratio is always computed with a pair of ĝ
and ĥ with the same number of samples.

C Median ELBO against iteration counts

The results in Figure 2 demonstrate that QuadCV generally outperform NoCV,
while ZVCV-GD provides only marginal improvement and can even converge to
a suboptimal maximum in some cases (e.g. logistic regression, real NVP 2, and L
= 10). The performance gap between the estimators also decreases as the number
of gradient samples L increases, as seen in the bottom rows of Figure 2a and 2b. It
should be noted that QuadCVs may perform poorly in the early stages of gradient
descent (e.g. logistic regression on mean-�eld Gaussian and hierarchical Poisson
on real NVP) as it takes time to learn the quadratic function f̃ . In general,
there is also a high degree of variability in ELBO across di�erent runs. This is
especially noticeable in Figure 2a due to the substantial impact of λ initialisation
on optimisation convergence. For a more detailed examination of the individual
trajectories with various initialisations, please refer to Appendix F.

The variance ratio of the gradient estimators can help explain the perfor-
mance gap observed in Figure 2. As shown in Figure 3, QuadCV generally
achieves a lower variance than ZVCV-GD, particularly for Gaussian q when
Ef̃ can be computed exactly. The estimator with ZVCV-GD and larger L tends
to perform better in models with fewer CV (i.e. low dimz), as the β is less sus-
ceptible to over�tting when solving the least squares with the gradient descent
algorithm discussed in Section 4.2. On the contrary, in models with large dimz,
such as BNNs, ZVCV-GD fails to reduce variance.

A noteworthy characteristic of QuadCV is that variance reduction only be-
comes prominent after f̃ in (11) has been adequately trained. This typically
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(a) Mean-�eld Gaussian with 10 (top) and 50 (bottom) gradient samples.
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(b) Real NVP with 10 (top) and 50 (bottom) gradient samples.

Fig. 2: ELBO is plotted against the number of gradient descent steps for di�erent
numbers of gradient samples L and two families of q. The bold lines represent the
median of ELBO values recorded at the same iteration across �ve repetitions.
The shaded area illustrates the range of ELBO values across �ve repetitions.
The ELBO values are smoothed using an exponential moving average. The tra-
jectories of ZVCV-GD and NoCV are nearly identical in both full-batch and
mini-batch BNN when L = 10. A higher ELBO indicates better performance.
See Figure 6 for plots where the bold lines represent the mean ELBO.
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occurs as the optimisation process nears convergence. With a QuadCV-adjusted
gradient estimator, it is possible to push the ELBO at convergence a few nats
further, although signi�cant time has to be spent to reach convergence at all.
However, this raises an interesting question about the worthiness of such an ef-
fort, as a relatively minor improvement in ELBO may not necessarily translate
into substantially improved downstream metrics; see Appendix F for a more
in-depth discussion.

The comparison between L = 10 and L = 50 in Figure 2 suggests that vari-
ance reduction in the early stages can facilitate quicker convergence in terms of
iteration counts (notice the leftward shift in the trajectories for L = 50. This
observation implies that employing a larger number of gradient samples is an
e�ective strategy to improve the convergence performance of stochastic VI, as
long as the computation of additional gradient samples remains cost-e�ective
in the overall optimisation process. It is important to note that increasing L
from 10 to 50 immediately reduces the gradient estimator's variance by �ve-fold
(equivalent to a variance ratio of 0.2) from the very �rst iteration of the opti-
misation, in contrast to QuadCV. These results suggest that variance reduction
is more bene�cial during the initial stages of optimisation when the goal is to
expedite convergence towards a satisfactory ELBO, rather than aiming to attain
the maximum achievable ELBO.
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Fig. 3: We present the variance ratio V[ĥ]/V[ĝ], where ĝ is NoCV and ĥ is either
ZVCV-GD or QuadCV, at each iteration. We show only the median variance ra-
tios recorded at the same iteration across �ve repetitions, omitting the individual
variance ratios from each repetition to prevent clutter in the plots. The ratios
from mean-�eld Gaussian and real NVP are shown in top and bottom rows
respectively. Note that NoCV (in red) is always 1 by de�nition. We see that
ZVCV-GD (in blue) struggles to reduce variance in the BNN models. There is
also a signi�cant overlap in QuadCV between L = 10 (solid green) and L = 50
(dotted green). A lower ratio indicates better performance. See Figure 7 for plots
where the bold lines represent the mean variance ratios.
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D Results from rank-5 Gaussian

The insight derived from Figure 4 and 5 below are similar to those obtained
from Figure 2, 1 and 3. In most cases, the cost for evaluating control variates
outweighs the improvement in ELBO achieved through variance reduction in the
gradient estimator. We observe marginal gain in ELBO despite the estimators
with control variates taking longer time to converge.

E Mean ELBO trajectories and variance ratio

We have recreated the �gures in Section 5 and Appendix D, with the exception
that the bold lines now represent the means of ELBO or variance ratios, as
opposed to their medians. Using means provides a more transparent depiction of
the robustness of each method, although it can be substantially in�uenced by the
repetition that starts farthest from the optimal λ. Ideally, individual trajectories
should be plotted separately (as in Appendix F), but this is not feasible due to
space limitations. Nonetheless, the �ndings of this study are substantiated by
interpreting either the mean or median of the evaluation statistics.

F Individual runs of full-batch BNN with mean-�eld

Gaussian

We zoom in on a particular model and variational family from the experiments
in the main text. Our aim in this section is to look the trajectory according
to each initialisation separately to help visualise the impact of initialisation on
convergence. Due to space limitations, we have only included trajectories from
full-batch BNN with mean-�eld Gaussian. In addition to the ELBO reported in
the main text, we also report the downstream metric, log pointwise predictive
density evaluated on a test set (test lppd), which is popular in the VI literature.
Mathematically, the test lppd is de�ned as

∑
x∈Dtest

log

(
|Z|−1

∑
z∈Z

p(x|z)

)
.

Here, Dtest represents a test set, Z is a set of samples drawn from q(z;λ), and
|Z| indicates the cardinality of Z. We have set |Z| = 1000 in our experiments.
The test lppd is also referred to as the test log-likelihood, test log-predictive, or
predictive log-likelihood in the literature [23, 3].

Figures 11a clearly show that trajectories vary substantially with di�erent
initialisations. This is consistent with the high variability of ELBO trajectories
in Figure 2.

In all cases, increasing L, the number of gradient samples, e�ectively reduces
the variance of the gradient estimator from the outset of the optimisation pro-
cess. This stands in contrast to QuadCV, which only becomes e�ective after the
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(a) ELBO versus iteration counts.
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(b) ELBO versus wall-clock time.

Fig. 4: ELBO is plotted against gradient descent steps and wall-clock time for
varying numbers of gradient samples L using rank-5 Gaussian. The bold lines
represent the median of ELBO values recorded at the same iteration across �ve
repetitions. The ELBO values have been smoothed using an exponential moving
average. A higher ELBO indicates better performance. See Figure 9 for plots
where the bold lines represent the mean ELBO.
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(a) Variance ratio

Fig. 5: We present the variance ratio V[ĥ]/V[ĝ] of rank-5 Gaussian, where ĝ is

NoCV and ĥ is either ZVCV-GD or QuadCV, at each iteration. We show only
the median variance ratios recorded at the same iteration across �ve repetitions,
omitting the individual variance ratios from each repetition to prevent clutter in
the plots. Note that NoCV (in red) is always 1 by de�nition. We see that ZVCV-
GD (in blue) struggles to reduce variance in the BNN models. There is also some
overlap between L = 10 (solid green) and L = 50 (dotted green). A lower ratio
indicates better performance. A lower ratio indicates better performance. See
Figure 10 for plots where the bold lines represent the mean variance ratios.

quadratic approximation f̃ in (11) has been adequately trained (Figure 11b).
Consequently, QuadCV performs poorly in the early and middle stages of opti-
misation (as seen in Repetitions 2 and 3 in Figure 11a).

Prior research on variance reduction in pathwise gradient estimators [14, 6, 7]
often aims to push the boundaries of attainable ELBO. Achieving this typically
requires longer training periods. However, we are of the opinion that the addi-
tional ELBO gained through this e�ort does not warrant the extra computational
cost incurred by implementing control variates. This is particularly relevant given
that improvements in downstream metrics, such as test lppd, are marginal when
compared to improvements achieved in the earlier stages of optimisation (note
the y-axis scale in Figure 12a and 12b).

For instance, in Repetition 1, there is only a 3 nats improvement in test
lppd (over a test set of size 100), while substantial improvements are observed
in the earlier stages, often in the scale of hundreds. These 3 nats come at a cost
of over 50% additional computation time compared to NoCV (as indicated in
Figure 1a). Furthermore, it is worth noting that an improvement in ELBO does
not invariably guarantee a substantial improvement in downstream statistics, as
evidenced in previous works, such as [24, 23, 5, 13, 3].

G Comparison of ZVCV-GD with di�erent

hyperparameters

We conducted experiments with ZVCV-GD that explore various hyperparameter
settings, running with both �rst- and second-order polynomials (Figure 13), and
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(a) Mean-�eld Gaussian with 10 (top) and 50 (bottom) gradient samples.
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(b) Real NVP with 10 (top) and 50 (bottom) gradient samples.

Fig. 6: ELBO is plotted against the number of gradient descent steps for di�erent
numbers of gradient samples L and two families of q. The bold lines represent
the mean of ELBO values recorded at the same iteration across �ve repetitions.
The shaded area illustrates the range of ELBO values across �ve repetitions.
The ELBO values are smoothed using an exponential moving average. The tra-
jectories of ZVCV-GD and NoCV are nearly identical in both full-batch and
mini-batch BNN when L = 10. A higher ELBO indicates better performance.
See Figure 2 for plots where the bold lines represent the median ELBO.

testing di�erent number of steps in the inner gradient descent loop (Figure 14).
We focus on the hierarchical Poisson model using a mean-�eld Gaussian and
setting L = 10. We repeated the experiment �ve times, each time with di�erent
initialisations. The red trajectories in Figure 13 and 14 correspond to the default
settings of ZVCV-GD as speci�ed in Section 5.
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Fig. 7: We present the variance ratio V[ĥ]/V[ĝ], where ĝ is NoCV and ĥ is either
ZVCV-GD or QuadCV, at each iteration. We show only the mean variance ratios
recorded at the same iteration across �ve repetitions, omitting the individual
variance ratios from each repetition to prevent clutter in the plots. The ratios
from mean-�eld Gaussian and real NVP are shown in top and bottom rows
respectively. Note that NoCV (in red) is always 1 by de�nition. We see that
ZVCV-GD (in blue) struggles to reduce variance in the BNN models. There is
also a signi�cant overlap in QuadCV between L = 10 (solid green) and L = 50
(dotted green). A lower ratio indicates better performance. See Figure 3 for plots
where the bold lines represent the median variance ratios.
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(a) Mean-�eld Gaussian with 10 (top) and 50 (bottom) gradient samples.
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(b) Real NVP with 10 (top) and 50 (bottom) gradient samples.

Fig. 8: ELBO is plotted against wall-clock time for di�erent numbers of gradient
samples L and two families of q. The bold lines represent the mean of ELBO
values recorded at the same iteration across �ve repetitions. The shaded area
illustrates the range of ELBO values across �ve repetitions. The ELBO values
are smoothed using an exponential moving average. A higher ELBO indicates
better performance. See Figure 1 for plots where the bold lines represent the
median ELBO.
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(a) ELBO versus iteration counts.
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(b) ELBO versus wall-clock time.

Fig. 9: ELBO is plotted against gradient descent steps and wall-clock time for
varying numbers of gradient samples L using rank-5 Gaussian. The bold lines
represent the mean of ELBO values recorded at the same iteration across �ve
repetitions. The ELBO values have been smoothed using an exponential moving
average. A higher ELBO indicates better performance. See Figure 4 for plots
where the bold lines represent the median ELBO.
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(a) Variance ratio

Fig. 10: We present the variance ratio V[ĥ]/V[ĝ] of rank-5 Gaussian, where ĝ is

NoCV and ĥ is either ZVCV-GD or QuadCV, at each iteration. We show only
the mean variance ratios recorded at the same iteration across �ve repetitions,
omitting the individual variance ratios from each repetition to prevent clutter
in the plots. Note that NoCV (in red) is always 1 by de�nition. We see that
ZVCV-GD (in blue) struggles to reduce variance in the BNN models. There is
also some overlap between L = 10 (solid green) and L = 50 (dotted green). A
lower ratio indicates better performance. See Figure 5 for plots where the bold
lines represent the median variance ratios.

Figure 13b reveals that second-order ZVCV-GD did not e�ectively reduce
variance in the gradient estimator; instead, it introduced additional noise into
the estimator. This detrimental impact is also evident in the ELBO trajectories,
as shown in Figure 13a. In light of these �ndings, we concluded that the simpler
�rst-order ZVCV-GD is preferable over the second-order variant.

In Figure 14, we present the ELBO trajectories and variance ratios obtained
by running the inner gradient descent (GD) of ZVCV-GD with three di�erent
settings: 4 steps, 20 steps, and `until convergence'. Here, `convergence' is de�ned
as the point at which the residual of the inner least squares problem in (9) no
longer decreases substantially.

We observe that running the inner GD until convergence does not neces-
sarily yield the greatest variance reduction, as illustrated in Figure 14b. This
phenomenon can be attributed to over�tting the linear regression in (9), where
the number of rows in C is considerably smaller than the number of columns.
On the other hand, iterating the inner GD 20 times achieves a more substantial
variance reduction compared to the default 4 steps.

However, it is worth highlighting that there is no discernible impact on the
ELBO trajectories when varying the number of GD steps, as demonstrated in
Figure 14a.

The optimal number of steps is not always evident without experimentation.
Hence, we typically opt for 4 steps to balance computational e�ciency and the
risk of over-optimizing the inner GD process.
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(a) ELBO trajectories. This is a zoomed-out version of the last column of Figure 2a.
Higher values are preferred.
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(b) Variance ratios. A reading of 1 indicates no variance reduction. Lower values are
preferable.

Fig. 11: The trajectories of ELBO and variance ratio for full-batch BNN with
mean-�eld Gaussian are depicted over the course of iterations, with each of the
�ve repetitions presented individually. By de�nition, the variance ratio of NoCV
(red) is 1. Notably, there is a substantial overlap between NoCV (in red) and
ZVCV-GD (in blue). In some cases, the distinctions between all three methods
are hardly discernible. However, there is a relatively noticeable di�erence be-
tween L = 10 and L = 50.
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(a) Test lppd trajectories.
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(b) Test lppd trajectories, zooming in between lppd = (−145,−135).

Fig. 12: The trajectories of test lppd for full-batch BNN with mean-�eld Gaus-
sian are depicted over the course of iterations, with each of the �ve repetitions
presented individually. Notably, there is a substantial overlap between NoCV
(in red) and ZVCV-GD (in blue). In some cases, the distinctions between all
three methods are hardly discernible. However, there is a relatively noticeable
di�erence between L = 10 and L = 50. Higher values are preferred.
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(a) ELBO trajectories. Higher values are preferable.
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(b) Variance ratios. A reading of 1 indicates no variance reduction. Lower values are
preferable.

Fig. 13: ELBO trajectories and variance ratios for hierarchical Poisson models
using mean-�eld Gaussian, ZVCV-GD with L = 10, and �rst- and second-order
ZVCV-GD both with 4 inner GD steps. The experiment was repeated �ve times,
each time with di�erent initialisations.
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(a) ELBO trajectories. Higher values are preferable.

Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
0.25

0.50

0.75

1.00

1.25

Iteration

V
ar

ia
nc

e 
ra

tio

Inner GD steps 4 20 converge

(b) Variance ratios. A reading of 1 indicates no variance reduction. Lower values are
preferable.

Fig. 14: ELBO trajectories and variance ratios for hierarchical Poisson models
using mean-�eld Gaussian, (�rst-order) ZVCV-GD with L = 10, running with
di�erent number of steps in the inner gradient descent. The experiment was re-
peated �ve times, each time with di�erent initialisations. The ELBO trajectories
for di�erent GD steps are practically indistinguishable. The erratic variance ra-
tio readings occur during the early optimisation stages in the low ELBO region,
where gradient magnitudes are substantial.


	Pathwise Gradient Variance Reduction with Control Variates in Variational Inference

